Localized Impacts. CO concentrations in 2016 are expected to be lower than existing conditions due to stringent State and federal mandates for lowering vehicle emissions. Although traffic volumes would be higher in the future both without and with the implementation of the proposed project, CO emissions from mobile sources are expected to be much lower due to technological advances in vehicle emissions systems, as well as from normal turnover in the vehicle fleet. Accordingly, increases in traffic volumes are expected to be offset by increases in cleaner-running cars as a percentage of the entire vehicle fleet on the road.

Emission Source	Pounds per Day					
	VOC	NO _X	СО	SO _X	PM _{2.5}	PM ₁₀
Proposed Project /a/						
Mobile Sources	136	116	881	<1	46	243
Area Sources	<1	12	10	1	<1	<1
Total Emissions	136	128	891	1	47	243
Existing Land Uses /b/						
Mobile Sources	57	53	404	<1	22	112
Area Sources	<1	5	4	<1	<1	<1
Total Emissions	57	58	408	<1	22	112
Net Emissions	79	70	465	<1	25	131
SCAQMD Threshold	55	55	550	150	55	150

taha 2008-105 4.2-21